Topic
The 2017 hurricane season is proving to be one of the strongest in history, and predictive modeling plays an important role in evacuation and mitigation planning. Coastal communities in the path of hurricanes face several major hazards - strong winds, heavy rainfall, relentless waves, and storm surge. Storm surge is a type of transient sea level rise where water is forced towards the shore by winds, and the right conditions can produce very high levels - Hurricane Harvey raised Galveston Bay by upwards of ten feet, and in 2012 Hurricane Sandy produced 12-foot surge in Lower Manhattan. I'll discuss the current state of storm surge modeling with focus on an open-source package called GeoClaw, developed by academic researchers across the U.S. GeoClaw uses Python and Fortran to run a dynamic simulation of coastal flooding using storm and topography datasets, and thanks to some novel dimensionality reduction it can be run on a laptop.